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Abstract. Assessments of water balance, watershed response, and landscape evolution to climate change require representation 

of spatially and temporally varying rainfall fields over a drainage basin, as well as the flexibility to simply modify key driving 

climate variables (evaporative demand, overall wetness, storminess). An empirical-stochastic approach to the problem of 

rainstorm simulation enables statistical realism and the creation of multiple ensembles that allow for statistical characterization 

and/or time series of the driving rainfall over a fine grid for any climate scenario. Here we provide detail on the STOchastic 15 

Rainfall Model (STORM), which uses this approach to simulate drainage basin rainfall. STORM simulates individual storms 

based on Monte Carlo selection from probability density functions (PDFs) of storm area, storm duration, storm intensity at the 

core, and storm center location. The model accounts for seasonality, orography, and the probability of storm intensity for a 

given storm duration. STORM also generates time series of potential evapotranspiration (PET), which are required for most 

physically based applications. We explain the how the model works and demonstrate its ability to simulate observed historical 20 

rainfall characteristics for a small watershed in SE Arizona. We explain the data requirements for STORM and its flexibility 

for simulating rainfall for various classes of climate change. Finally, we discuss several potential applications of STORM.    

1 Introduction 

Models of watershed response (rainfall-runoff), water balance, and landscape evolution require characterization of the driving 

climate, particularly spatially explicit rainfall fields over a time series. The spatial and temporal variability in water delivery 25 

to the land surface from the sky and its fate within a drainage basin is a major control on: a) the partitioning of water between 

infiltration and runoff, which affects flood risk and water resources (Liang et al., 1994; Beven et al., 1995; Beven and Freer, 

2001; Michaelides and Wilson, 2007; Slater et al., 2015); b) water availability to vegetation, which impacts growth, survival, 

ecosystem health, and the carbon cycle (Rodriguez-Iturbe et al., 2001; Caylor et al., 2006; Peñuelas et al., 2011; Singer et al., 

2014); and c) patterns and processes of sediment erosion and deposition, which affect the long-term evolution of landscapes 30 

(Tucker and Slingerland, 1997; Tucker and Bras, 2000; Singer, 2010; Slater and Singer, 2013; Hobley et al., 2017; Michaelides 

et al., 2018), as well as the redistribution of contaminants with basins (Springborn et al., 2011; Singer et al., 2013; Higson and 
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Singer, 2015) and the hydrologically controlled in situ biogeochemical processing of such contaminants into more dangerous 

forms (Donovan et al., 2016b, a; Singer et al., 2016).  

 

However, generating realistic, spatially explicit rainfall fields in drainage basins is a major challenge for several reasons. First, 

rain gauge data are not typically available at the appropriate spatial resolutions or length of record to well characterize spatial 5 

heterogeneity. Second, rain gauge data represent only one realization of multiple potential temporal sequences and spatial 

patterns of rainfall. Third, global climate models (general circulation models, GCMs) operate at spatial resolutions that are too 

coarse to represent heterogeneous rainfall fields over small basins (Grotch and MacCracken, 1991). Fourth, while weather 

generators (regional circulation models, RCMs or convection permitting models, CPMs) downscale GCM output for use in 

dynamic simulation of weather, the model interaction is unidirectional and a regional model is wholly reliant on the boundary 10 

conditions provided by the GCM, which may not well characterize the regional dynamics of climate change (Endris et al., 

2013; Prein et al., 2015; Dunning et al., 2017; Prein et al., 2017). Fifth, weather generators that operate at high spatial resolution 

based on the relevant physics of air mass movement and precipitation formation require detailed information on winds and 

storm trajectories (Skamarock et al., 2008) that are not available for most basins, and which are challenging to summarize over 

longer periods of time (e.g., decades).  15 

 

A further consideration is that internationally agreed climate change scenarios themselves (e.g., the Intergovernmental Panel 

on Climate Change, IPCC) may limit our learning about the regional expression of recent and future climate change because 

they have already constrained the problem into covarying sets of gridded climate variables from GCM output (or re-analysis 

data products) based on particular global emissions scenarios. Given major challenges of GCMs to represent rainfall at the 20 

basin scale with variance in topography and orography, ensemble output of climate change projections from GCMs (e.g., 

CMIP5, CMIP6) are unlikely to provide good characterization of the regional or local expression of climate change (Dunning 

et al., 2017), even after downscaling. More importantly, GCM output and re-analysis data products do not allow for the 

flexibility to assess watershed responses to a wide range of potential regional climate changes that could impact runoff/flood 

regimes, groundwater recharge, the water balance between plants and the hydrologic cycle, and basinwide erosion and 25 

topographic development.      

 

To fill this research gap, we have developed the STOchastic Rainfall Model (STORM), which generates time series of spatially 

explicit rainfall fields over a gridded domain and spatially uniform time series of evaporative demand. Together these time 

series can be used to drive watershed responses within dynamic rainfall-runoff models, water balances within land surface 30 

models, or runoff/erosion regimes within landscape evolution models. STORM was introduced elsewhere to explore rainfall 

patterns and processes within a small drainage basin in the Southwest USA (Singer and Michaelides, 2017), but here we 

provide the relevant detail about the model initialization, operation, and evaluation, and describe various improvements that 

have been made since its initial appearance in the scientific literature. Additionally, we suggest several additional modifications 
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to STORM that may improve its long-term utility, and we outline its potential for broader use in various hydrologic, 

ecohydrologic, and geomorphic applications. We also provide links to open source code for STORM in two forms (Matlab 

and Python), along with sample input data and parameters.  

 

2 Model Initialization and Operation 5 

 

The STOchastic Rainfall Model (STORM) is an empirical-stochastic rainfall generator designed for simple, heuristic 

simulation of high resolution drainage basin rainfall under control climate conditions or under different classes of climate 

change. The term ‘empirical-stochastic’ (sensu (Singer and Dunne, 2004)) refers to Monte Carlo selection of several key 

rainstorm characteristics from distributions that are created from historic datasets. STORM performs this multi-layer parameter 10 

selection to create sequences of spatially varying rainfall over a decadal time series. STORM output is particularly useful for 

simulating rainfall patterns in regions subjected to convective rainfall, where gridded datasets of precipitation do not capture 

the dynamic behavior (spatial and temporal variability) of rainstorms, and where GCM output is of limited utility in 

understanding expected changes in rainfall regimes over a basin.  

 15 

Implementing STORM involves initialization and operation steps. Initialization involves creation of distributions of relevant 

variables that characterize rainstorms and the rainfall they produce over a spatial grid. STORM can be run with 1 or 2 

hydrologic seasons with different rainfall characteristics. Model inputs include (Fig.1): annual/seasonal precipitation total, 

PTotal (A); storm area, which determines which grid locations in the basin are ‘hit’ by each storm (B); storm center location on 

a storm grid with 500-m spacings (C); storm duration, PD (D); rainfall intensity-duration curve number based on a family of 20 

curves from which intensity, PI, at the storm center is determined based on the selected value of PD (E); and storm spatial 

gradient, or the decline in PI with distance from the storm center (F). An additional distribution that is required to create a 

complete dataset for driving other models is potential evapotranspiration (PET). The PET distribution contains historic daytime 

and nighttime values for the region of interest organized into data by month of the year. This distribution is sampled on a 

twice-daily basis to characterize average daytime and nighttime evaporative demand that follows the same time signature as 25 

the gridded rainfall. PET is assumed to be spatially uniform across the watershed for any 12-hour period. Each of these 

initializing variable distributions can be created from data from a drainage basin, should these data be available (e.g., from 

one, several, or a network of rain gauges and meteorological stations), or theoretically, based on nearby basin data or 

generalizing assumptions. Finally, a characterizing interarrival times between storms is necessary to enable explicit watershed 

responses to rainfall inputs (Fig.2). A distribution of interarrival times is assembled from historic data at all relevant gauging 30 

stations. The probability density functions (PDFs) that represent these historical data for each model variable reside external 

to the STORM code which calls them, and they can thus be easily modified as new information becomes available. 
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STORM is implemented as a function in Matlab with the following syntax: 

STORM(MODE, NUMSIMS, NUMSIMYRS, SEASONS, PTOT_SCENARIO, STORMINESS_SCENARIO, 

PTOT_SCENARIO2, STORMINESS_SCENARIO2, ET_SCENARIO). The input arguments are as follows. MODE refers to 

whether STORM is running in validation or simulation model. NUMSIMS refers to the number of n-year Monte Carlo 

simulations to be run. NUMSIMYRS is the number of years in each simulation. SEASONS indicates either one or two seasons 5 

with different PDFs to sample from. PTOT_SCENARIO refers to the climate change scenario to be simulated with respect to 

total annual or seasonal rainfall (wetness) in Season 1. STORMINESS_SCENARIO refers to the climate change scenario to 

be simulated with respect to rainfall intensity (storminess) in Season 1. PTOT_SCENARIO2 refers to the climate change 

scenario to be simulated with respect to total annual or seasonal rainfall (wetness) in Season 2. STORMINESS_SCENARIO2 

refers to the climate change scenario to be simulated with respect to rainfall intensity (storminess) in Season 2. ET_SCENARIO 10 

refers to climate change scenario for evapotranspiration (evaporative demand). Each of these climate change scenarios for 

rainfall can be implemented as either step changes (up or down) or as temporal trends (up or down) playing out over multiple 

decades, and there is full flexibility to modify the magnitude of these changes for both seasons. Currently the ET climate 

change scenario only permits step changes. We describe the climate change scenarios in more detail below. Current climate 

conditions can also be simulated for any or all of these input parameters. 15 

 

In Python, STORM is implemented similarly, but with some syntax differences. It is likewise implemented as a function, 

which can be simply imported from the defining script. This function is defined as: 

storm(mode, numsims, numsimyrs, seasons, ptot_scenario, storminess_scenario, ptot_scenario2, storminess_scenario2, 

ET_scenario, storminess_scaling_factor=0.05, storm_stepchange=0.25, storminess_scaling_factor2=0.05, 20 

storm_stepchange2=0.25, ptot_scaling_factor=0.05, ptot_scaling_factor2=0.05, ET_scaling_factor=0.25). The first nine 

arguments are identical to their Matlab equivalents. The remaining arguments that are supplied with default values permit 

direct control through the function call of the step and gradual change values specified by the preceding scenarios (see below) 

– in the Matlab version, these are controlled directly from the script defining the function. Documentation is provided as a 

docstring to the function. The Python version of storm has a number of very common Python packages as dependencies – os, 25 

time, numpy, datetime, matplotlib, scipy, and six. These are typically installed as standard in Python distributions. Storm in 

Python also requires the pyshp package, which is readily available through package managers including pip and conda. Storm 

in Python is agnostic between Python 2 and Python 3. In Python, input files (see below) are supplied as comma separated value 

(csv) files, rather than .mat files, but the contents of these files is identical to that in Matlab. Where distribution objects are 

provided in Matlab, these are provided to the Python version as simple text files specifying the key parameters of those 30 

distributions. More details of both of these input file formats are provided in the docstrings.  

 

To operate STORM, we simulate rainfall on a storm-by-storm basis with a temporal resolution of 1 minute at each rainfall 

output grid location with a resolution of 1 km. The high spatial and temporal resolution enables rich information to be generated 
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from STORM, allowing for detailed assessment of spatial heterogeneity and temporal variance in rainfall fields. We first select 

a threshold value of PTotal for a simulation year from its distribution and then generate rainstorms until the median PTotal across 

all rainfall output grid locations within the basin equals or exceeds the selected threshold value of PTotal. Then a new simulation 

year begins and STORM proceeds until the length of simulation (e.g., several decades) is complete. PTotal can be designated as 

either a seasonal or annual total, depending on whether the watershed of interest is characterized by strong seasonality in 5 

rainfall. If STORM is implemented with two seasons, separate PDFs of rainstorm characteristics A, B, D, E (Figure 1) should 

be prepared for each season. PDFs for this this paper were fit to historical data from WGEW using the Distribution Fitting 

Tool within Matlab. Sample distributions are provided here.  

 

The results generated at each rainfall output grid location over all simulations can be statistically analyzed. STORM generates 10 

an overall rainstorm matrix that includes: Storm # (#), Storm Area (km2), Storm Duration (min), Intensity-Duration Curve # 

(#), Storm Intensity at storm center (mm/hr), # Gauging (or rainfall grid) Locations Hit (#), Intensity Recession Value 

(mm/hr/km), Storm Total (mm), Longitude (m), Latitude (m), Year (y), and Cumulative Simulation Time (hr). STORM also 

generates a separate matrix of output at each rainfall grid location that includes: Year, Storm #, Local Storm Intensity (mm/hr), 

Storm Duration (min), Local Storm Total (mm), Annual Local Cumulative Precipitation Total (mm), Interarrival Time between 15 

storms (hr), and Cumulative Simulation Time (hr). Note: simulation of interarrival times or inter-storm periods enables full 

water balance calculations or use of STORM output as input to other models (e.g., rainfall-runoff or land surface models). 

 

All simulations of STORM for this paper were done using Matlab v.2017b and v.2017b on an Intel Dual Core i7-4712HQ 

CPU @ 2.30GHz running on a Dell Inspiron laptop with 16 GB of RAM. In simulation mode, each simulation of 30 years on 20 

a grid of 128 rainfall locations within a 149 km2 basin took ~12.5 minutes for the Control run, or ~25 seconds per simulated 

year. The computational time of each ensemble varies depending on the scenario. For example, the simulation of PTotal(+) PI(–

) took ~20 minutes per 30-y simulation (or ~40 seconds per simulated year).  
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Figure 1. Components required for model initialization and simulation. For each year, a selection is made from the PDF of 

PTotal (A). Then, during each simulation year, selections are made from the following PDFs on a storm-by-storm basis: storm 

area (B), storm center location on a 500-m resolution UTM grid, red dots, within a 5-km buffer around the watershed boundary 5 

(C), storm PD (D), intensity-duration (PI-PD) curve number (E) based on probabilistic selection favoring less intense storms 

(see Fig.2), and storm intensity gradient with distance from storm center (F). Note: P I values are selected from one of the 

curves in (E) using a selected value of PD from (D), and then a fuzzy tolerance within ±5 mm/hr is applied. The general equation 

for the PI-PD curves in (E) is: PI = ͗λ*exp(-0.508*PD)+κ*exp(-0.008*PD)+c. Parameter values for Curve 1 are: λ =642.2; κ=93.1; 
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c=4.5. To model climate change as a step change in wetness (shift in total annual precipitation), we shifted the PTotal distribution 

up PTotal(+) and down PTotal(–) by one standard deviation without changing its shape (A). To model climate change as a step 

change in storminess (shift in intensity for a particular rainstorm duration), we modified the selected intensity for all storms 

as: PI ± Ψ * PI, where Ψ is a fractional change in storm intensity (E). Thus, the selected intensity for all rainstorms is raised 

for PI(+) and lowered for PI(–). In this paper, we used Ψ = 0.25. The magnitude of step changes in wetness and storminess 5 

modeled in this paper were roughly based on observed decadal trends in precipitation from 1956-1999 at the Walnut Gulch 

Experimental Watershed (WGEW). We have also built into STORM the capability to assess trends in both PTotal and PI by 

multiplying the selected value of either rainfall variable for each year of simulation by an annual change scalar (see text for 

details).  

 10 

 

Figure 2. PDF of interarrival times which enables watershed response and water balance computations. 

 

3 STORM Application to Walnut Gulch 

 15 

Here we provide a few more details about how we assembled the relevant PDFs for WGEW that are shown in Fig.1. PDFs 

were generated within Matlab using the Distribution Fitting Tool, though the methods are straightforward enough to be easily 

applied within many data analysis software packages. To create the PDF of storm areas, we truncated the distribution of Syed 

et al. (2003) to exclude all rainstorms in their largest spatial bin (which comprised ~1/2 of all their rainstorms), and then fitted 

an extreme value distribution to the remaining storms (Fig.1B). Syed et al. (2003) indicated that this bin of high frequency for 20 

large spatial areas is probably an artefact of sampling such that they are overestimating storm areas due to repeat sampling of 

moving storms and due to the occurrence multiple simultaneous storm cells. Thus, our exclusion of this largest area bin is 

justified to achieve our goal of modeling individual (discrete) rainstorms and the resulting distribution has a mean storm area 
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of just under 90 km2. In our initial tests of STORM, we found that the results were very sensitive to the β parameter (Eq.1; 

Fig.1F). Thus, to enable a variety of plausible storm gradients, we allowed β to vary according to a normal distribution (µ=0.25, 

σ=0.08, truncated to the interval [0.15, 0.67 km-1]), based on the range of values reported elsewhere for WGEW (Eagleson et 

al., 1987; Morin et al., 2005). 

 5 

Intensity-duration curves were generated by first computing the maximum PI value for each value of PD (per minute). We then 

smoothed the resulting points by LOcally WEighted Scatterplot Smoothing (LOWESS, (Cleveland, 1979)) using the ‘smooth’ 

function in Matlab with a span of 0.1 with a 2nd order polynomial model. Subsequently we fit a distribution to the LOWESS 

curve using the Curve Fitting Tool in Matlab. This resulted in the functional form of a double negative exponential curve, 

consistent with other datasets from dryland regions (Nicholson, 2011). Next, we maintained the same functional form of the 10 

fitted maxima curve (Curve 1) but decreased the magnitude of its coefficients (not the decay parameters) and the intercept, 

where relevant, by percentiles (90th, 80th, 70th, … 10th, 5th) to generate multiple curves that occupy the full phase space of 

measured PI-PD pairs (Fig.1E). The phase space of PI-PD is not uniform in terms of probability of occurrence of each rainfall 

event. There is a tendency for more intense storms to occur less frequently than less intense ones. Therefore, each PI-PD curve 

is assigned a probability of selection that reflects this fact, wherein the most intense curves (1-3) are assigned lower probability 15 

of selection (-30%, -20%, -10%, respectively) and the least intense ones (9-11) are assigned higher probability of selection 

(+30%, +20%, +10%, respectively) with respect to a hypothetical uniform distribution in curve selection probability (Fig.3A). 

In other words, rather than assigning a uniform selection probability of 0.091 to all eleven curves, we decreased the probability 

of selection of the top three and increased the probability of selection of the bottom three curves. This yields the adjusted curve 

of probabilities labeled as ‘Control’ in Figure 3A. The empirical curve-fitting method described here is not very elegant or 20 

generalizable to different areas, so in future versions of STORM, we will explore the use of cupolas to represent intensity-

duration relationships as marginal probabilities (e.g., (Vandenberghe et al., 2011)). 

 

STORM also incorporates orography, or the tendency for rainfall to vary with elevation, which is common in many drainage 

basins around the world. We simulate orography by further modifying the probability of curve number selection from the 25 

‘Control’ curve to account for higher intensity rainfall at higher elevations (Fig.3B). Based on a hypsometric analysis of rainfall 

as a function of elevation from gauging records, we divided all rainfall grid locations into three orographic groups based on 

elevation (Fig.1C from (Singer and Michaelides, 2017)). Then we modified PI-PD curve selection probabilities for each storm 

center accordingly. The lowest orographic group (OG1) has the selection probability of Curve 1 (most intense curve) decreased 

by 50%, while the mid-elevation group (OG2) has a 25% reduction of probability for Curves 1 and 11, and the highest 30 

orographic group (OG3) has a 50% reduction of probability for selecting Curve 11 (least intense curve) (Fig.3B). This simple 

procedure of increasing/decreasing the probability of storm intensity at the storm center location appears to capture the general 

form of orography in the test basin (Fig.1D from (Singer and Michaelides, 2017)). However, a more explicit or theoretical 

method for characterizing the effects of orographic precipitation could replace the current method in STORM. We imagine 
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that the cupola method mentioned above would also be suitable for characterizing orography by fitting separate cupolas to PI-

PD data from gauges within different bands of elevation in a basin determined by hypsometry.  

 

 

Figure 3. Assigned probabilities to PI-PD curve numbers for the various simulations. Refer to Fig.1E for their plotting 5 

positions. The initial case is shown in black and represents deviations of ±30%, ±20%, and ±10% probability for the first/last 

3 curves to reflect the fact that larger storms are less probable than smaller ones (A). This initial case is modified as follows to 

account for basin orography (B). To represent orographic group 1 (OG1-lowest elevation group, Fig.1C from Singer and 

Michaelides (2017)), we decreased the probability of curve 1 by 50% and applied the difference uniformly to all other curves 
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such that total probability equals 1. To represent orographic group 2 (OG2-middle elevation group), we decreased the 

probability of curves 1 and 11 by 25% and applied the difference uniformly to all other curves. To represent orographic group 

3 (OG3-highest elevation group), we decreased the probability of curve 11 by 50% and applied the probability difference 

uniformly to all other curves. 

We also analyzed at all the rainfall data from WGEW to assess the frequency of different storm intensities and found that, as 5 

expected, there is a high frequency of rainstorms with low intensity and vice versa (Fig.4). This validates our development of 

the ‘Control’ set of curve selection probabilities (Fig.3A). 

 

Figure 4. Data-derived number of rainstorms for various bins of storm intensity recorded at 85 WGEW gauges over 62 years. 

The historical record shows that are ~14,000 events of 10 mm/hr, ~3500 events of 25 mm/hr, ~200 events of 50 mm/hr, and 10 

~4 events of 100 mm/hr. 

In each multiyear simulation, storms of various areas cover different parts of STORM’s model domain. If we aggregate all the 

simulated rainfall data from each of the rainfall output grid locations, we see increasing coverage of the PI-PD phase space with 

increasing length of simulation in years (Fig.5). Simulations of 25 years appear to fill in much of the PI-PD phase space for 

‘Control’ (no-climate change) conditions (Fig.5F). This indicates that STORM is faithfully representing the input data on 15 

intensity-duration of rainfall in a stochastic treatment over multiple decades. 
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Figure 5. Maps of simulated storms (red circles) on the model grid for individual simulations over periods of 1 year (A), 5 

years (B), and 25 years (C). Solid blue circles represent WGEW gauging stations. Lower panels indicate the corresponding 

intensity and duration values for simulated storms within the 1-y (D), 5-yr (E), and 25-yr (F) model runs for part of the intensity-

duration phase space. Green dots represent simulated storms and blue dots represent gauge observations. 5 

 

Finally, a plausible characterization of climate change is necessary to gain insight into the potential impacts to watershed 

response. In terms of precipitation, climate change can manifest in wetter or drier conditions (e.g., over a season or a year) 

and/or in different storm characteristics (e.g., relationship between PI and PD). We therefore suggest there are two classes of 

climate change that affect convective precipitation and watershed response. In STORM we can simulate different classes of 10 

climate change based on very simple rules. To simulate step changes in basin wetness (annual/seasonal precipitation totals), 

we shift the PDF of PTotal up for PTotal(+) or down for PTotal(–) by one standard deviation, while retaining the same shape of the 

distribution (Fig.1A). Note: this truncates the left tail of original PTotal distribution for the scenario of PTotal(–). To simulate step 

changes in storminess, we multiply the selected value of PI at the storm center by a scalar fraction and add (subtract) the 

product to the selected PI value to reflect increased (decreased) storminess (Fig.1E). Specifically, we modified the selected 15 

intensity for all storms as: PI ± Ψ * PI, where Ψ is a fractional step change in storm intensity. Thus, the selected intensity for 

all rainstorms is raised for PI(+) and lowered for PI(–). In this paper, we used a step change of Ψ = 0.25.  

 

We also enable the simulation of temporal trends in rainfall. We include scalar multipliers that can be set within the STORM 

code, and which are used to modify the relevant value of rainfall each year. For example, to characterize a trend in wetness 20 

(total precipitation per season or year), we annually update the PTotal PDF by generating a new PDF of for each year after 
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progressively modifying the mean value of the PDF (Fig.1A) as: μ = μ  ± μ * Φ , where Φ is a fractional scaling factor that 

increases the PDF of PTotal each year of simulation. Within STORM, a similar procedure is done for trends in storminess. In 

this case, to characterize a positive trend in storminess (magnitude of storm intensity per season or year), we annually update 

the PTotal PDF by generating a new PDF of for each year after progressively modifying the mean value of the PDF as: PI ± Ω 

* PI, where Ω is a fractional scaling trend that increases the selected value of storm intensity by an accumulating trend each 5 

year of simulation (i.e., the storminess trend in any year of  simulation is computed as ΩY = Ω * Y, where Y is the simulation 

year). In this paper, we used initial values for both Ω and Φ of 0.05. 

4 Model Output and Evaluation 

It is possible to extract from STORM detailed output of rainfall characteristics for discrete rainstorms at each rainfall grid 

location, including storm-by-storm intensity, duration, and storm totals (Fig.6). Thus, one can develop a localized time series 10 

of these rainstorm characteristics for different locations or sub-basins within a drainage basin. Once the simulated interarrival 

times between each pair of rainstorms (Fig.2) are added back to the time series and used alongside the simulated times series 

of PET (Fig.7), we obtain a temporally explicit climate driver that can be used to drive models of watershed response, land 

surface models, or to make localized water balance calculations. Figure 8 illustrates output at a single gauging location of 

explicit time series of storm rainfall for different climatic scenarios (see below). Note that the time series shown in Figs.6-8 15 

only illustrate output for a single multi-decadal simulation. The stochastic capability of STORM allows for generation of 

multiple n-year simulations. Thus, the STORM output for all such simulations should ideally be analyzed statistically at each 

representative location to produce representative time series of rainfall variables. Otherwise, they can be used as ensemble 

inputs to other model frameworks. 
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Figure 6. Illustration of the detail of model output that is generated storm-by-storm for one 30-year simulation at a single 

gauging (rainfall grid) location, showing rainfall intensity (A), duration (B), and storm total (C) for each storm event simulated 

at that gauge. 
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Figure 7. Illustration of simulated evapotranspiration for a 25-y simulation with two seasons under (A) the control climate 

change scenario (no change in PET), (B) a 25% step-change increase in PET, and (C) a 25% step-change decrease in PET.  
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Figure 8. Illustration of simulated rainfall at one gauging location for a 25-y simulation with two seasons. The panels are: (A) 

control climate conditions (CC); (B) a step-change increase in PTotal for Season 1 and a step-change decrease in PTotal for Season 

2 (S1(+)/S2(-)); (C) a step-change decrease in PTotal for Season 1 and a step-change increase in PTotal for Season 2 (S1(-)/S2(+); 

(D) positive trends in PTotal for both seasons (S1(T+)/S2(T+); (E) a step-change increase in PI for Season 1 and a step-change 5 

decrease in PI for Season 2; (F) a step-change decrease in PI for Season 1 and a step-change increase in PI for Season 2; (G) 

positive trends in PI for both seasons. 
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We evaluated the model’s skill at simulating observed rainfall characteristics at 85 gauges in WGEW. We selected three 

representative variables: number of storms per year, average storm total, and total annual precipitation. We compared observed 

versus simulated values of these variables at each gauging location in WGEW. Fig.9 shows these as simulated versus observed 

on 1:1 plots, and relevant statistics on model skill are provided. Generally, STORM demonstrates a high level of skill at 

simulating rainfall characteristics across the domain, without any model tuning. The spread of points around the 1:1 line arises 5 

from the ensemble of multi-decadal simulations, and will therefore vary from ensemble to ensemble. Generally, it is desirable 

to have a range of values that span the 1:1 line (above and below it). This ensures the model is generating a field of rainstorm 

characteristics beyond those which exist in the historical record, a notable strength of the Monte Carlo procedure implemented 

in STORM.  

Note: the random selection of model parameters (Figs.1 and 2) was done using the ‘random’ function in Matlab (v.2016b), 10 

when sampling from a PDF (e.g., PTotal), and using the ‘datasample’ function when sampling from a vector of data points 

(storm center location). The random number generator seed was shuffled prior at the beginning of each Matlab session. 
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Figure 9. Observed versus modeled statistics on annual monsoon precipitation: median number of storms per year (A), median 

storm total (B), and mean annual PTotal (C). Values of RMSE and PBIAS are also shown. No model tuning was performed to 

achieve these results. We note that observed values of storm total and PTotal are slightly overpredicted by our simulations (over 
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these 30 test ensembles). Nevertheless, these results demonstrate a high level of model skill in reproducing a range of rainfall 

characteristics that span observed values without any model tuning. 

5 STORM in the Context of Climate Change 

Regional gridded datasets provide a picture of trends in certain climate variables that are relevant to rainstorms. Fig.10 shows 

monthly output at WGEW for the 0.5° CRU TS3.24.01 dataset for temperature anomalies (A) and precipitation anomalies (B). 5 

These datasets show a significant increase in temperature of ~2°C over recent decades (which constitutes the period of the 

WGEW rainfall record), but there is no clear trend in the monthly precipitation from this dataset. The lack of a trend in monthly 

precipitation data contrasts with the high-resolution data from WGEW, which showed a long-term increase in PTotal, but with 

declining PI. Such changes to the hydrology of a basin could have major implications for its runoff regime, water balance, and 

landscape evolution. This suggests that gridded datasets are not adequate for investigations of convective rainfall in dryland 10 

(and potentially many other) basins. This observation lends support for both detailed data analysis from dryland datasets such 

as WGEW, but also for modeling approaches such as STORM for exploring the potential impacts of climate change on rainfall 

and watershed responses.  

Fig.7 shows STORM output of ET showing clear day-night variations, as well as seasonality (monthly day-night ET were 

sampled from historical data compiled by month). Fig.7A shows the control climate scenario, Fig.7B shows a step-change 15 

increase in ET, and Fig.7C shows a step-change decrease. Fig.8 illustrates STORM rainfall output at a single gauging point in 

the basin as complete time series that include interarrival times, so the data can be used to drive other models. The figure also 

shows these time series of rainstorm totals for various climate change scenarios including control climate (A), a step change 

increase in total Season 1 rainfall with a step change decrease in total Season 2 rainfall (B), a step change decrease in total 

Season 1 rainfall with a step change increase in total Season 2 rainfall (C), positive trends in total rainfall for both seasons (D), 20 

a step change increase in Season 1 rainfall intensity with a step change decrease in Season 2 rainfall intensity (E), a step change 

decrease in Season 1 rainfall intensity with a step change increase in Season 2 rainfall intensity (F), and positive trends in 

rainfall intensity for both seasons (G). These outputs illustrate the range of capability included in STORM for simulating an 

array of different regional expressions of climate change that could have important implications for watershed response. In 
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general increases in PTotal tend to densify the number of rainstorms in the time series (and vice versa), while increases in 

storminess, tend to create more peaked rainstorm totals (c.f., Fig.8D, Fig.8G).       

 

Figure 10. Monthly mean temperature (A) and monthly mean precipitation anomalies (B) for the Walnut Gulch area from the 

0.5° CRU TS3.24.01 dataset (Harris and Jones, 2017). These plots show a recent increase in mean temperature that could 5 

influence rainfall PI-PD relationships, irrespective of the lack of long-term trend in precipitation totals from the gridded dataset. 

Curves are based on LOWESS smoothing (Cleveland, 1979) via the ‘smooth’ function in Matlab (v.2016b) using a 30% data 

span. 

6 STORM Data Requirements 

An important consideration of any model is the data requirements. Obviously, the less data required enables more widespread 10 

model use to do tackle environmental problems. However, on the other end of this spectrum, insufficient data can lead to poor 

model skill. Thus, we aimed to strike a balance that would enable widespread use of STORM with limited data. In terms of 

storm event rainfall data, we investigated how much rain gauge data is required by STORM to well characterize the historical 

phase space of rainfall characteristics. For WGEW, we plotted event rainfall intensity versus duration for 100% of the available 

data, 50%, 25%, 10%, 5%, and 1% (Fig.11). This analysis shows that even at 1% of the available data (n=1,851), the PI-PD 15 
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phase space is still clearly delineated, allowing for development of the necessary PI-PD curves (Fig.1E). This suggests one 

could use data from a basin with only one or several rain gauges that have collected event rainfall for a few decades. 

Another important data requirement in STORM is a PDF of storm areas (Fig.1B). This may be a more challenging PDF to 

develop due to limited data. Options here include analyzing spatial statistics on discrete storms from a network of rain gauges 

(e.g., (Syed et al., 2003)), analyzing storm characteristics from rainfall radar images (e.g., (Peleg and Morin, 2014)), or 5 

developing a hypothetical distribution based on regional understanding of mapped rainstorms (e.g., from hyetographs). 

 

 

Figure 11. Illustration of the limited sensitivity of STORM to the quantity of input data. Plots of PI versus PD for various 

percentages of the complete dataset (indicated at the upper right of each subplot) show that even when only 5% of the original 10 

gauge data are included, the PI-PD phase space for the complete dataset is still broadly defined. The number of data points 

declines across these subpanels from 185,109 (100%) to 1,851 (1%). These factors indicate that STORM could be reasonably 

applied in a basin with dramatically less available gauging data, if other storm characteristics can be constrained by other 

means. 

 15 
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7 Extension/Modification of STORM for Additional Applications 

For many applications, a complete accounting of the water balance between precipitation, evapotranspiration, and infiltration 

is required. Specifically, closing the local water balance requires quantifying the evaporative demand and the length of inter-

storm periods, which enable drainage and drying of soil layers. These factors affect the watershed response to subsequent 

rainfall events. In order to characterize these aspects, we have modified STORM from its original capability (Singer and 5 

Michaelides, 2017) to include several new features. First, we have added a PDF of inter-storm periods that is sampled randomly 

after each storm event. The addition of these inter-storm periods changes STORM output into time series that reflect real time 

at the Earth’s surface (e.g., Fig.8). Second, we have assembled a PDF of potential evapotranspiration based on measurements 

of temperature and relative humidity, metrics which are readily available over multiple scales (Fig.7). Third, we implemented 

seasonality in rainfall to enable simulations over a single season or year, or over two seasons with distinct differences in 10 

precipitation characteristics (distinct PDFs of rainfall in summer compared to winter). The WGEW example implemented for 

illustration of the model here is one such basin with a strong monsoon season that produces a high percentage of the annual 

rain and most of the runoff, compared with the winter season dominated by weak frontal storms. These improvements to 

STORM now make it suitable as a climate driver of other watershed response models that simulate hydrology between slopes 

and channels (surface runoff, infiltration, streamflow) (Michaelides and Wainwright, 2002; Michaelides and Wilson, 2007; 15 

Michaelides and Wainwright, 2008), groundwater recharge during and after rainfall events (Beven and Freer, 2001), and 

interactions between streamflow and alluvial aquifers (Evans et al., 2018). It also enables STORM to be useful in water balance 

models (e.g., Land Surface Models) to assess water availability to plants through dynamic ecohydrological simulation of plant-

climate interactions and water utilization (Caylor et al., 2006; Laio et al., 2006; D'Odorico et al., 2007), as well as 

energy/carbon fluxes between the land surface and the atmosphere (Bonan, 1996; Best et al., 2011). Finally, STORM can also 20 

be used to drive geomorphic models that characterize erosion and deposition processes within drainage basins in response to 

sequences of rainfall and runoff (Michaelides et al., 2009; Michaelides et al., 2012; Michaelides and Martin, 2012; Michaelides 

and Singer, 2014), and even landscape evolution models that simulate landform development over longer timescales (Tucker 

and Hancock, 2010; Hobley et al., 2017). Coupling STORM to such models would enable a wide range of interdisciplinary 

scientists to investigate key problems in the environment that have their origin in the climate system. These range from which 25 

water sources are used by plants (Dawson and Ehleringer, 1991; Singer et al., 2014; Evaristo et al., 2015; Sargeant and Singer, 

2016; Evaristo and McDonnell, 2017) to what is the dominant source and timing of groundwater recharge (Scanlon et al., 

2006; Wheater et al., 2010; Cuthbert et al., 2016) to the role of climate in shaping landscape morphology (Tucker and 

Slingerland, 1997; Tucker and Bras, 2000; Singer and Michaelides, 2014; Michaelides et al., 2018). A version of STORM is 
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under active development in the modular open-source surface process modelling framework Landlab (Hobley et al., 2017), in 

part to facilitate such future work. 

8 Code and sample data  

Both Matlab and Python versions and sample data can be found here. 
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